Echoes of Existence-how to engage the students

I am slowly working to find solutions to the problems that will arise when the students implement the installation.

First, how to get students that are not comfortable with nature to want tobe involved. What will draw them in?

Second, a big problem is how to control a group of college kids in a field and have them complete a detailed installation.

Bloomington is a walking city. Every day as I would walk about town and the campus I worried about how I was going to solve these two problem. And like on most college campuses everyone is in their own audio visual world contained between the ear pieces of a headset. And I was the same. The difference was I still wanted to connect to those passing by me with a “good morning” or hi. I found the IU students were very focused on the sounds in their headsets they did not need to make eye contact or say hello.

In a discussion with an English professor, Shannon Gayk, who also teaches a walking class, I learned that a novel idea for students is silent walking. The idea of walking without a headset without sound — silent.

Thinking of headsets and silent - my mind went straight to silent raves then to a silent installation.

Would the concept of a silent installation draw the students in. Could this commitment to headsets be a possible tool for crowd control during the installation?

I love the idea. But that leads to another hurdle. How do I design a silent installation? What technology makes this possible?

With a quick Google search, I found several companies that provide everything you need for a silent event.

Bombus melanopygus - Black tailed bumble bee.

How the bumble bee got its stripes https://www.eurekalert.org/news-releases/600078

Bombus melanopygu, a captivating bumblebee species that I recently began studying for my body of work, “Rumblings”. As an artist, my process begins with thorough research, delving into the intriguing world of each unique species. Despite the limited information available, I find myself captivated by Bombus melanopygus and its enchanting research qualities.

Incredible breakthroughs have been made by researchers in understanding the color differences within bumblebee species. A recent study, conducted by experts at Penn State, has revealed the presence of a specific gene that drives these variations in color patterns. This discovery not only sheds light on the astonishing diversity among bumblebees, but also provides insights into the evolution of mimicry, where individuals adopt similar color patterns within a given area. The gene resides in a highly conserved region of the genome, which serves as the blueprint for segmentation. This groundbreaking research was published in the renowned journal Proceedings of the National Academy of Sciences on April 29, 2019. -

To Leave

The ephemeral beauty of nature lies not just in living organisms but also in their inevitable decay.

This morning, while examining “deeper than that” a private living sculpture art installation featuring indigenous plants, I was struck by the fading loveliness of the Rosinweed leaves as they withered. Contemplating the homophones “leaf”, “leave” and “leaves”, I pondered how societies historically understood the ecological value of allowing foliage to persist even after senescence. Is that why we call these objects a verb?

Leaves that have left a plant continue to nourish the soil and its microbial inhabitants even in death. Their decaying forms hold moisture, shade the living organisms in the ground, and provide nutrients as they return to earth, building a balanced ecology that sustains urban landscapes. They are an important material natures uses in its engineering of the water table.

Though a single leaf may seem a small, ephemeral thing, in aggregate and over time, the leaves left behind establish and uphold the very foundations of life.

Their decay is not an end but rather a beginning - a quiet, essential recycling of energy and matter that allows new growth to emerge.

In both the noun and the verb there are layers of beauty, and layers of ecological purpose, in the leaves left to molder where they fall. An ecosystem thrives on this gift of decay, using the ephemeral to fuel the eternal. Such is the profound, poignant cycle that the installation’s Rosinweed specimens, even as they bend and brown, help perpetuate. Out of seeming loss, abundance; out of death, life.

Leave your leaves and be grateful for their beauty as nouns and as verbs.

Living Llabyrinth- Building the grid

Building a Large Grid for Installing a Labyrinth: My Process. One reason I write these blog posts is to record my process. The other is to share information.

Constructing a labyrinth grid of this magnitude may seem like a daunting task. And it is for me. With the right strategy, it can be accomplished efficiently. As I embarked on this venture, I took the time to experiment and optimize my methods. Here's a breakdown of the process that was the most efficient.

To begin, gather the necessary materials: X-axis cords measuring 53 at 54' and Y-axis cords measuring 33 at 88' lengths. Keep in mind that the cords come in 100-foot lengths.

I wish I had of planned at 50’ by 100’ bison. The lighter is for singing the ends so they will not ravel. The tape is for tapeing the measured and twist-tied ropes for the installation.

I am making each cord that is a multiple of 5 a white cord. I think this will helpful the day of the installation.

1. X-axis cords: Start by unwinding the hundred-foot cord carefully, ensuring it doesn't become tangled. Here's a handy tip: tie a knot at one end and secure a twist tie next to it. Place the knotted end in a doorway and shut the door on it. This will hold it in place. Then, stick your arm through the middle of the looped cord and slowly unwind it, walking away from the door until it's completely straight.

2. Measure and cut the cord, leaving a few inches to knot and singe the ends to prevent unraveling. Tie another twist tie at the 54' mark. This will serve as the reference cord for measuring all other X-axis cords. Keep this cord secured in the door.

3. Take the leftover cord singe the end and knot it and tightly tie a twist tie inside the knot. Shut in the door with the reference length cord. Measure it against the reference cord and splice it with a piece of the next 100' wound-up cord to measure the 54' length accurately. Now you have a cord to start marking the grid on.

To mark the grid on the first cord—

The dining has been my studio work space. First I covered the 8’ table in a thick paper to protect it. Next I marked every 20” from end to end.

4. Prepare a long table by placing sheets of paper and securing them to the table so they will not slip. Measure and mark on the paper every 20". Lay the cord on the marked paper. To ensure stability, anchor the cord with a heavy object like a case of water.

I used a case of water to weigh down the cords.

Starting from the first knot, and twist tie secure each twist tie tightly along the edge of the table at the 20' marks. Continue tying twist ties until you reach the end of the 54' mark. You may have a little excess cord hanging after the last tie.

The 8’ mark of the table length and the last twist tie. I leave a few inches at the end just in case.

The first piece with every 20” tightly tied with a twisties.

5. Carefully wind up the cord, tape it securely, and mark it as X-axis 54'.

The first grouping of five- 4 red and the 5th white.

53 pieces - completed.

6. Finally, organize the cords by making four red and one white, keeping them grouped together.

The National Wildlife Federation - feature

Partnering with communities, schools, governments, and organizations across the country, the National Wildlife Federation is leading the charge for conservation.

Through their tireless commitment to protecting and restoring habitats, they have managed to breathe new life into endangered species like eagles, deer, elk, bighorn sheep, and whales.

I am deeply proud to have my work featured in the prestigious fall edition of the National Wildlife Federation magazine. It is a true honor to be recognized alongside such incredible conservation efforts.

CARBONsink rises — how to get rid of your turf grass.

“Carbon by the Yard” was a temporary relief in the shape of the Carbon element symbol, “C”. This simple gesture brought attention to the fact that gas lawnmowers emit eleven times the emissions of a new car.

Carbon by The Yard

In 2022, I transformed “Carbon by the Yard” piece into “CARBONsink ” using solarization and regeneration instead of herbicides to transform the turfgrass into biology. I then seeded it with wildflowers. The new piece soaks up rainwater, stores carbon and supports pollinators.

It is important to note that the EPA estimated that non-native turfgrass monocrops use one-third of all public water. In the US, this translates to 9 billion gallons of water daily.

These two social sculptures highlight how our colonial landscape decisions impact our carbon footprints.

CARBONsink 6/8/2023

DIY- check out the steps to install your own CARBONsink.

Soak the ground.

Use the power of water in conducting heat into the plot. Proper hydration will pull heat from the surface deeper into the soil, enhancing the effectiveness of solarization.

Cover the soaked turf with two layers of cardboard. This will smother the turf grass and use the suns energy to solarize it.

Soak the cardboard layer

Layer 4”- 6” leaf mold compost. I use Nature’s Way Resources and Heirlooms.

Spread the compost evenly .

Soak the compost , and level it for sprinkling the seeds.

Sprinkle seeds generously.

The seeds come from Native American Seeds.

Make sure the seeds make good solid contact with the ground. Press them in.

April 2023

June 8,2023

July 29, 2023

Rumblings - Agapostemon virescens

Agapostemon virescens lead a very unique lifestyle - living in underground communal nests, with up to 30 individual females sharing the same space. These tricolored metallic bees have an intricate defense system which consists of assigning roles; while some female bees explore and gather food, at least one always stays behind as gatekeeper! Interestingly enough, this species cleverly protects their nest from predators by making sure that they always has someone on guard duty.

During late-July to early-August, a second generation of A. virescens emerges that is both male and female. With no place in their natal nests for the males to go, they seek shelter elsewhere - hosting bee slumber parties where huddles are formed! The females take advantage of this time by sipping on flowers like New England aster, goldenrods and sneezeweed so as to survive winter without having any need build nests or lay eggs during fall season. Sadly though when temperatures drop these mated females enter hibernation while males die selflessly protecting them until spring arrives again next year.

What cave paintings from 25,000 years ago can teach us about regeneration.

This morning I read Mysterious marks on Ice Age cave art may have been a form of record keeping in science News.

The marks left in a cave 25,000 years ago illustrate the wisdom of early hunter-gatherers. Even then, these people were knowledgeable about their environment and respectful of nature's cycles; understanding that taking too much from one place could lead to decline. Nowadays, we can look back at this example as an invitation for modern civilization to take up sustainable living practices—regenerating our resources instead of simply consuming them without thought or consequence.

I spend a lot of time thinking about the question, how do we mimic regeneration in our cities? We have to ask, What can we learn from Earth’s earliest environmentalists? A lot.

Call of The Crane

“When we hear his call we hear no mere bird. We hear the trumpet in the orchestra of evolution. He is the symbol of our untamable past, of that incredible sweep of millennia which underlies and conditions the daily affairs of birds and men.”

– Aldo Leopold on the call of the sandhill crane

During my Christmas day stroll with family and Tobi, I came across a crumbling old stump harboring an exquisite feathered creature. The majestic bird looked to be either a Whooping Crane or Sandhill crane - the two largest birds of North America.

While North America has many struggling ecosystems, it's so important that we remember the stories of hope and recovery too. The Sandhill crane is one such story - once endangered, their numbers have rebounded thanks to determined humans working to save them. Getting to know these creatures better can only inspire more hope for future environmental recoveries. I'm looking forward to learning more about the whooping cranes on my trip south this February with Curtis. If you know any other inspiring stories of environmental recovery please share them with me?

As found on Christmas day with it's natural patina.

In my garage studio after giving the bark a little wash to highlight the movement in the wood.

Detail

Camouflage, fire ants and anole

When maintaining “Symbiosis” and when I observe urban landscapes, I see the beauty in decaying plants and the tiny creatures they protect. This brown anole is a garden beneficial, keeping fire ants and other insects in check. Without camouflage, they are prey for birds, snakes, and some spiders. As an artist I find beauty through systems thinking and a balanced ecosystem.

Can you find him/her mimicking a dried, twisted leaf?

Golden-reined Digger Wasp - fascinating and gentle despite its sinister appearance.

This is one interesting creature, so interesting I pasted the article below.

Despite its vivid alarm coloration, the Great Golden Digger Wasp is not an aggressive species of wasp. They tend to mind their own business and can be found sipping on flower nectar during the summer, but in the early spring, females prepare to lay eggs.

Females will dig into loose soil and create many deep tunnels. When established, she then covers them to hide their existence. A female will track a small insect and sting them to paralyze them, but not to kill them. Once the prey is immobile, she will clutch it using her antennae and mandible (mouth parts) in order to fly it back to the tunnels. While in flight with her prey, it is not uncommon to see birds like robins or tanagers attempt to steal her meal from her by chasing her until she drops it. No other known species of Digger Wasp is known to be harassed by birds in this way. If the female is successful in returning to her tunnels with her catch, she will place the paralyzed prey aside to quickly inspect a tunnel. If it looks like it's still intact, she will pull the paralyzed insect, head first, down into it. She then lays an egg on the insect, exits the tunnel, and covers it over again. She repeats this process for each tunnel. Unlike other wasps, she does not actively defend her nest. Once hatched, the wasp larvae will feed on the living, yet immobile, insect until they are developed enough to leave the tunnel lair in the summer. Eventually, the parasitism of the paralyzed insect kills it.

Scientists are studying the behavior of this unique species. Great Golden Digger Wasps seem to display a type of internal programming. If their insect prey is moved away from the tunnel while the female inspects it, she will emerge, relocate it, bring it back to the tunnel entrance and start the inspection all over again. Every female exhibited the same repetitive 'start inspection again' behavior when tested in that way.

Females have also shown that they do not keep a tally of how many insects they catch versus how many tunnels they create. If some meals are stolen by birds, they do not realize that they are short on insects compared to tunnels.

With such gorgeous orange and black coloration, mild demeanor, and interesting behaviors, the Great Golden Digger Wasp is one to admire, not destroy. Perhaps a careful observer will discover even more fascinating things about this species.

Planet Popsicles — and spam

I received a spam email this summer with a bold photo of a popsicle asking, “How do you cool off in the heat of the summer?” I immediately thought about how the planet cools off. That spam email inspired these ephemeral sculptures, I used the materials mother nature uses to cool the planet.

PLANET POPSICLES

6” X 1” X 12” ephemeral

Sticks, H20, Passionflower, Fall obedient plant, and American Beautyberry

PLANET POPSICLES

6” X 6” X 24” ephemeral

Sticks, H20, Passionflower, Fall obedient plant, and American Beautyberry, Beatles, Pokeweed, Scarbs, Golden Rod, passed butterflies, and passed moths

Symbiosis Relationships 10/2022

New World Giant Swallowtail and Milkweed and the health of Monarchs. This tropical mikweed HAS to be cut down November 1. The Milkweeds are the host plants for Monarchs. They need to move south by November and won’t head south if Tropical Milkweed is available as a host.

Monarch and Climbing Hempvine. Climbing Hempvine is an aromatic delight. It reminds me if warmed sweet honey. The Monarchs agree.

Purple Coneflower and the Gulf Fritillary Butterfly.

Mockingbirds and the fence. I have learned that birds need habitats with multiple elevations. The fence is a popular place for birds to look for insects and tiny toads to eat while keeping an eye on predators.

Monarch and Climbing Hempvine.

Ask upper of the Hesperiini family

Gulf fritillaryon American beauty berry.

GulfFritillary on Marsh fkeabane pictured below.

Marsh fleabane

Gulf fritillary and Lawndale’s mailbox. Over a few weeks the count in the doorway climbed to over 200.

In identified mushrooms.

Carpenter bee

Gukf Fritillary are eating everything

How nature arranges itself

Chrysalis on crabgrass stem

Morning glory, mile a minute vine.

Carpenter bee and Obedient flower

The White viened pipevinesis is the host plant for the Pipelvine swallowtails. I wish I had more. The caterpillars devoures it, and then it comes back.

Cloudless Sulphur and Turkscap

Hemiargus ceraunus, it blue ceraunus,an d pasted native plants.

Monarch and Blue mist flower

Northern Mocking bird perched on the fence.

Northern Mockingbird and trough pond

Hesperiina And Frogfruit

Pushfly and Passiflora leaf

True Sparrow stays in messy bush like spaces for safety and for a source of caterpillars

American snout butterfly

Gulf Fritillary with OE

“Ophryocystis elektroscirrha (OE) is a debilitating protozoan parasite that infects monarchs. Infected adult monarchs harbor thousands or millions of microscopic OE spores on the outside of their bodies. When dormant spores are scattered onto eggs or milkweed leaves by infected adults, monarch larvae consume the spores, and these parasites then replicate inside the larvae and pupae. Monarchs with severe OE infections can fail to emerge successfully from their pupal stage, either because they become stuck or they are too weak

to fully expand their wings. Monarchs with mild OE infections can appear normal but live shorter lives and cannot fly was well as healthy monarchs.

Although recent research shows that tropical milkweed can lower OE replication within infected monarchs (due to high levels of cardenolide toxins), this might not benefit the monarch population. In

fact, this could actually promote disease spread by allowing moderately infected

I PROJECT MONARCH

HEALTH

monarchs that otherwise would have died quickly following eclosion to live longer and spread more parasite spores.“- monarch parasites.

The largest Mammal

The eating and Waste Habits of the largest mammal of the greatest numbers on a land mass have the greatest impact on all other life forms. In Texas there are 26,448,193 humans and 10,900,000 cows. Homo sapiens are the most impactful mammal.

In today's society our eating habits define some of us socially and morally. This makes the discussion of eating meat vs. a vegan lifestyle and saving the planet a loaded topic. One of the most important topics of our day triggers emotions that progress bit discussion and block minds. When I find a movie or a book that looks at the topic in a non-threatening, non emotional context I like to highlight it.

The documentary Goodbye Cows looks at the impact of the two consumption models.

If you want to take a deeper dive into the beautiful and complex relationship between ruminants the planet and humans, I recommend the book Cows Will Save The Planet. By Judith Schwartz

On a lighter note in 2015 I was invited to visit a a friends family farm that raises cattle for consumption and regeneration. My friends incorporate methods that mimic nature and manage the cattle’s movement as predators managed herds. This process builds the health of the planet’s soil and tempers climate. .

My rancher friends Lisa and John threw some healthy treats in the back of their pick-up so that I could get some cow close-up.

The photo that inspired Mooove

I had to draw the expressive cows as they contorted, licked and moooved the pick-up clean.

MOOOVE 

4' X 6' c

harcoal, ink pastels,

2015

Below is the drawing. It still makes me laugh.